The role of enzyme dynamics and tunnelling in catalysing hydride transfer: studies of distal mutants of dihydrofolate reductase Published online

نویسندگان

  • Lin Wang
  • Nina M. Goodey
  • Stephen J. Benkovic
  • Amnon Kohen
چکیده

Residues M42 and G121 of Escherichia coli dihydrofolate reductase (ecDHFR) are on opposite sides of the catalytic centre (15 and 19 Å away from it, respectively). Theoretical studies have suggested that these distal residues might be part of a dynamics network coupled to the reaction catalysed at the active site. The ecDHFR mutant G121V has been extensively studied and appeared to have a significant effect on rate, but only a mild effect on the nature of H-transfer. The present work examines the effect of M42Won the physical nature of the catalysed hydride transfer step. Intrinsic kinetic isotope effects (KIEs), their temperature dependence and activation parameters were studied. The findings presented here are in accordance with the environmentally coupled hydrogen tunnelling. In contrast to the wild-type (WT), fluctuations of the donor–acceptor distance were required, leading to a significant temperature dependence of KIEs and deflated intercepts. A comparison of M42Wand G121V to the WTenzyme revealed that the reduced rates, the inflated primary KIEs and their temperature dependences resulted from an imperfect potential surface prearrangement relative to the WT enzyme. Apparently, the coupling of the enzyme’s dynamics to the reaction coordinate was altered by the mutation, supporting the models in which dynamics of the whole protein is coupled to its catalysed chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of enzyme dynamics and tunnelling in catalysing hydride transfer: studies of distal mutants of dihydrofolate reductase.

Residues M42 and G121 of Escherichia coli dihydrofolate reductase (ecDHFR) are on opposite sides of the catalytic centre (15 and 19 A away from it, respectively). Theoretical studies have suggested that these distal residues might be part of a dynamics network coupled to the reaction catalysed at the active site. The ecDHFR mutant G121V has been extensively studied and appeared to have a signif...

متن کامل

Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase.

A comprehensive analysis of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase is presented. Hybrid quantum/classical molecular dynamics simulations are combined with a rank correlation analysis method to extract thermally averaged properties that vary along the collective reaction coordinate according to a prescribed target model. Coupled motions correlate...

متن کامل

Extension and Limits of the Network of Coupled Motions Correlated to Hydride Transfer in Dihydrofolate Reductase

Enzyme catalysis has been studied extensively, but the role of enzyme dynamics in the catalyzed chemical conversion is still an enigma. The enzyme dihydrofolate reductase (DHFR) is often used as a model system to assess a network of coupled motions across the protein that may affect the catalyzed chemical transformation. Molecular dynamics simulations, quantum mechanical/molecular mechanical st...

متن کامل

Correlated motion and the effect of distal mutations in dihydrofolate reductase.

Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate. The catalytic rate in this system has been found to be significantly affected by mutations far from the site of chemical activity in the enzyme [Rajagopalan, P. T. R, Lutz, S., and Benkovic, S. J. (2002) Biochemistry 41, 12618-12628]. On the basis of extensive computer simulations for wild-type DHFR fro...

متن کامل

Contribution of active site dynamics to enzyme catalysis: study on a series of mutants of dihydrofolate reductase

This thesis describes an effort to expand current knowledge of catalysis in biological systems. The focus is on understanding how enzymes activate covalent bonds and specifically to study C-H bond activation via enzymes. The work presented here examined the role of protein dynamics and hydrogen tunneling in enzyme catalysis. Dihydrofolate reductase from Escherichia coli (ecDHFR), which catalyze...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008